
MITTEILUNGSBLATT DER AMATEURSONNENBEOBACHTER

Herausgegeben von der Fachgruppe Sonne der

174

ISSN 0721-0094 _____ Oktober 2025

SONNE – **Mitteilungsblatt der Amateursonnenbeobachter** – wird herausgegeben von der Fachgruppe Sonne der Vereinigung der Sternfreunde e. V. **SONNE** erscheint viermal im Jahr als Online-Veröffentlichung. Das Mitteilungsblatt dient dem Erfahrungsaustausch auf dem Gebiet der Amateursonnenbeobachtung. Senden Sie Ihre Beiträge, Auswertungen, Erfahrungen, Kritik, neue Ideen, Probleme an **SONNE** zur Veröffentlichung ein, damit andere Sonnenbeobachter davon Kenntnis erhalten und mit Ihnen Kontakt aufnehmen können. **SONNE** wird von den Lesern selbst gestaltet – ohne Ihre Artikel bestände **SONNE** nur aus leeren Seiten! Verantwortlich i. S. d. P. ist immer der Unterzeichnete eines Beitrages, nicht die Redaktion.

Manuskripte und Fotos für Titelbild und Rückseite von SONNE an:

Klaus Reinsch, Gartenstr. 1, D-37073 Göttingen, E-Mail: Redaktion@VdS-Sonne.de.

Bitte zu jedem Foto eine Bildbeschreibung mit Aufnahmedaten (Datum, Uhrzeit, Teleskop, Filter, Kamera, Bildbearbeitung usw.) und Bildorientierung mitschicken!

SONNE im Internet: www.VdS-Sonne.de

Ansprechpartner

Fachgruppenreferent:

Andreas Zunker, Mörikeweg 14, 75015 Bretten, E-Mail: Info@VdS-Sonne.de

Beobachternetz Sonnenfleckenrelativzahlen:

Andreas Bulling, E-Mail: Relativzahl@VdS-Sonne.de

Beobachternetz Fleckenzahl mit bloßem Auge:

Steffen Fritsche, Steinacker 33, D-95189 Köditz, E-Mail: A-netz@VdS-Sonne.de

Beobachternetz Weißlichtfackeln:

Michael Delfs, Waldsassener Str. 23, D-12279 Berlin

Beobachternetz Positionsbestimmung von Flecken:

Klaus-Peter Daub, Hamburg; Heinz Hilbrecht, Schweizerblick 12, D-79725 Laufenburg, E-Mail: Position@VdS-Sonne.de

Lichtbrücken:

Heinz Hilbrecht, Schweizerblick 12, D-79725 Laufenburg,

E-Mail: Lichtbruecken@VdS-Sonne.de

Beobachternetz H α -Relativzahl:

Martin Hörenz, Schulzendorf, E-Mail: H-Alpha@VdS-Sonne.de

Sonnenfinsternisse:

Thomas Wolf, c/o Volkssternwarte "Erich Bär", Stolpener Str. 74, 01454 Radeberg

Titelbild

Sonne im Licht der Ca-K-Linie am 07.09.2025, 12:03 UTC. 120/1000 Evostar (Öffnung mit UV390 Objektivfilter auf 77mm abgeblendet), Lunt B 1200 Modul, Canon EOS 2000 D Fullspektrum, Monochromeinstellung, 1/400 sec, ISO 100. Detailbild: Aktivitätsregionen AR 14211 und AR 14213, 12:58 UTC. Technische Daten wie oben, jedoch Barlowlinse 5X, 1/80 sec, ISO 200. Einzelbild(er) bearbeitet mit Fitswork, Microsoft Foto, Adobe Express, coloriert. Norden oben, Osten links. Autor: Hubert Joppich.

Redaktionsschluss für SONNE 175: 31. Dezember 2025

Inhalt

ragungen	
Die Tagung der VdS-Fachgruppen Sonne und Planeten 2025 in Bonn von Andreas Zunker	119
Beobachtungspraxis	
Große Nord-Süd-Asymmetrie der Sonnenfleckenrelativzahl im Maximum des Sonnenfleckenzyklus	
The state of the s	124
Synoptische Karten der Sonnenphotoshäre – oder wie ich sie generiere von Michael Möller	125
Auswertungen	
Relativzahlnetz SONNE: 2. Quartal 2025 von Andreas Bulling	134
Fackelaktivität im 2. Quartal 2025 von Michael Delfs	139
Sonnenflecken mit bloßem Auge 2. Quartal 2025 von Steffen Fritsche	140
Synoptische Karten der Sonnenphotosphäre der synodischen Carringtonrotationen 2300–2302	
von Michael Möller	144
Typenstatistik der Rotationen 2300–2302 von Michael Möller	145
Sonnenfleckenpositionen zu den synoptischen Karten der Rotationen 2300–2302	•
Fotoseiten	
Auswahl aktueller Rilder der Sonne	153

SONNE-Leser machen mit!

Schicken Sie uns Ihre schönsten Sonnenfotos zur Veröffentlichung zu! Bitte Aufnahmedaten (Datum, Uhrzeit, Instrument, Filter, Belichtungszeit usw.) nicht vergessen!

Schicken Sie uns regelmäßig Ihre Beobachtungsergebnisse und berichten Sie über Ihre eigenen Erfahrungen!

Nicht mehr im Buchhandel. Dafür jetzt um die Hälfte billiger! Rund 450 Seiten voller Informationen rund um die Sonnenbeobachtung. Geschrieben von 24 erfahrenen Hobbysonnenbeobachtern für die Praxis.

Inhaltsverzeichnis:

- 1. Instrumente und Hilfsmittel
- 2. Spezialgeräte zur Sonnenbeobachtung
- 3. Visuelle Beobachtung
- 4. Fotografie, CCD-, Film- und Videoaufnahmen
- 5. Sonnenflecken
- 6. Sonnenfleckenstatistik
- 7. Positionsbestimmung
- 8. Sonnenfackeln
- 9. Photosphärische Granulation
- 10. Sonnenbeobachtung im Hlpha-Licht
- 11. Sonnenbeobachtung im Radiobereich
- 12. Sonnenfinsternisse

Stückpreis 12,50 € zzgl. Porto und Versand.

Nur noch wenige Exemplare erhältlich!

Anfragen und Bestellungen bitte ausschließlich an:

Wolfgang Lille, Kirchweg 43 D-21726 Heinbockel

Telefon: +49(0)4144/606996 - FAX: +49(0)4144/606997

E-Mail: Lille-Sonne@gmx.de

Die Tagung der VdS-Fachgruppen Sonne und Planeten 2025 in Bonn

Andreas Zunker 01. Oktober 2025

Eine Sonne- und Planetentagung, das gab es doch schon mal, oder? Ganz genau, schon viermal, zuletzt 2013 in St. Andreasberg! Und warum die Neuauflage? Dem Autor dieses Berichts (FG Sonne) war vor zwei Jahren aufgefallen, dass einige Planetenbeobachter auch ambitionierte Sonnenbeobachter sind. Daher reifte die Idee, mal wieder eine gemeinsame Tagung zu organisieren und es wurde Kontakt mit Maciej Libert (FG Planeten) aufgenommen, der die Idee gut fand. Und so traf man sich am 6. und 7. September 2025 in der Volkssternwarte Bonn, ganz in der Nähe der alten Argelander'schen Sternwarte (Abb. 1), genauer gesagt im 1899 erbauten "Refraktorium" (Abb. 2). Die Vorträge wurden auch im Kuppelraum gehalten (Abb. 3), was dazu führte, dass die Teilnehmerzahl auf 40 Personen begrenzt war, neun Sternfreunde, u.a. auch aus Österreich und der Schweiz, nahmen online teil.

Abb. 1: Die Alte Sternwarte Bonn (Foto: Andreas Zunker)

Nach einer kurzen Begrüßung durch die beiden oben genannten Herren und Paul Hombach von der Volkssternwarte Bonn startete das Vortragsprogramm mit Georg Dittié, der über neue Erkenntnisse zum Aussterbeereignis im Ordovizium referierte und aufhorchen ließ, als er

berichtete, dass die Erde vor 460 Millionen Jahren möglicherweise auch einen Ring hatte. Danach erläuterte Achim Sperber seine Optimierungen verschiedener H-alpha-Teleskope und wie er gerade einen H-alpha-Doppelrefraktor für die binokulare Beobachtung baut. Achim hatte auch eines seiner Teleskope mitgebracht, damit wurde in den Pausen immer die Sonne beobachtet (Abb. 4). Anschließend folgte der erste Fachvortrag: Prof. Dr. Detlef Koschny legte den Zuhörern (und natürlich auch den Lesern dieses Beitrags) nahe, den Mond auf Mondeinschlagsblitze hin zu überwachen. Das geht am besten mit einer geeigneten Digitalkamera am Teleskop, das man auf die unbeleuchtete Seite des Mondes richtet. Speziell dafür geschriebene Software identifiziert Ereignisse, entweder live oder nachträglich im aufgenommenen Video [1].

Abb. 2: Gruppenbild vor dem Refraktorium (Foto: Maciej Libert)

Mit einem ähnlichen Thema ging es nach einer kurzen Kaffeepause weiter. Friedhelm Dorst berichtete, wie das aschgraue Mondlicht auch noch einen Tag vor oder nach Vollmond nachgewiesen werden kann. Inspiration dafür war der französische Astronom André-Louis Danjon (1890-1967). Beobachtungen von Mondeinschlagsblitzen dürften da aber nicht mehr möglich sein. (Sorry, Detlef! ;-) Anschließend zeigte Konrad Horn, wie er Filme von Sonneneruptionen und Protuberanzen erstellt und präsentierte die beeindruckenden Ergebnisse seiner Arbeit. Nach einer weiteren kurzen Pause nahm uns Daniel Fischer mit ins Jahr 1969 und berichtete, wie die Apollo-11-Astronauten die Sterne beobachteten und eines der von ihnen damals aufgenommenen Mondbilder als "Vollmond" Eingang in die Popkultur fand. Nun folgte der zweite Fachvortrag des Tages. Ulrich Köhler vom DLR berichtete ausführlich über die ESA-Missionen JUICE und Europa Clipper zu den Eismonden des Jupiters. Dabei ging er detailliert

auf die verschiedenen Instrumente und den komplexen Ablauf der Missionen ein. Nun folgte eine ausgiebige Kaffeepause, während der die Teilnehmer auch den leckeren, von Mitgliedern der Volkssternwarte Bonn gebackenen Kuchen genießen konnten. Danach folgte ein Beitrag von Michael Wynands über den Do-it-yourself-Spektroheliografen Sol'Ex [2], er gab viele nützliche Tipps aus der eigenen Praxis und zeigte seine fertigen Aufnahmen in verschiedenen Spektralbereichen.

Abb. 3: Das Auditorium im Kuppelraum (Foto: Maciej Libert)

Anschließend gab es einen weiteren Augenschmaus. Georg Dittié trat nochmal vor das Auditorium und zeigte Filme, die er mit seinen Allsky-Kameras aufgenommen hatte, darunter auch die ungewöhnlich intensiven Polarlichter in der Nacht vom 10. auf den 11. Mai 2024. Dann folgte auch schon der letzte Vortrag des Tages: Andreas Bulling stellte das Relativzahlnetz der FG Sonne vor. Er ging dabei nicht nur auf dessen Entwicklung seit der Gründung im Jahr 1977 ein, sondern auch auf Probleme bei der Auswertung und analysierte kurz das aktuelle Maximum.

Danach wurde gegrillt und es gab auch wieder Snacks, die von der Volkssternwarte Bonn zur Verfügung gestellt wurden, ebenso ein kleines Fass Bier. Man hatte draußen Tische und Stühle aufgestellt, so dass die Teilnehmer nach Herzenslust fachsimpeln konnten (Abb. 5). Gegen 19:00 Uhr war am dunstigen Himmel noch ein schöner Zirkumzenitalbogen zu bewundern. Anschließend ließen einige Teilnehmer den Abend vor einem traditionellen rheinischen Restaurant ganz in der Nähe des Alten Rathauses gemütlich ausklingen.

Abb. 4: H-alpha-Beobachtung in der Pause (Foto: Maciej Libert)

Am Sonntag stand dann die Exkursion zum Radioteleskop Effelsberg des Max-Planck-Instituts für Radioastronomie auf dem Programm. Dazu traf man sich am späten Vormittag vor dem Besucherpavillon mit Dr. Norbert Junkes, der zunächst im Inneren des futuristischen Gebäudes verschiedene informative Videos zeigte und Grundlegendes zum Radioteleskop erklärte. Danach begann der Rundgang über das Gelände, der die Besucher zunächst über Serpentinen nach unten zum Aussichtspunkt und zur LOFAR-Station Effelsberg führte. Von dort ging es am Fuße des Teleskops, dessen Parabolspiegel einen Durchmesser von 100 Metern hat, weiter Richtung Hauptgebäude. Während der Führung beobachtete das Teleskop verschiedene Pulsare, so dass es immer wieder zu einem neuen Objekt schwenkte, was sehr beeindruckend war! Im Hauptgebäude konnten der Kontrollraum sowie ein kleines Museum besichtigt werden (Abb. 6). Anschließend führte der Weg die Besucher durch den Wald wieder zurück zum Besucherpavillon, wo die Führung nach 2,5 Stunden endete. Anschließend kehrten noch einige Sternfreunde in einem nahegelegenen Imbiss ein.

Insgesamt war es eine gelungene Tagung und es wird sicherlich nicht wieder zwölf Jahre dauern, bis sich Sonnen- und Planetenbeobachter aus ganz Deutschland unter dem Dach der VdS treffen, um sich auszutauschen und interessanten Vorträgen zu lauschen. Herzlichen Dank an das Orga-Team der Volkssternwarte Bonn um Paul Hombach und alle, die zum Gelingen dieser schönen Tagung beigetragen haben!

Abb. 5: Gute Stimmung bei bester Bewirtung (Foto: Maciej Libert)

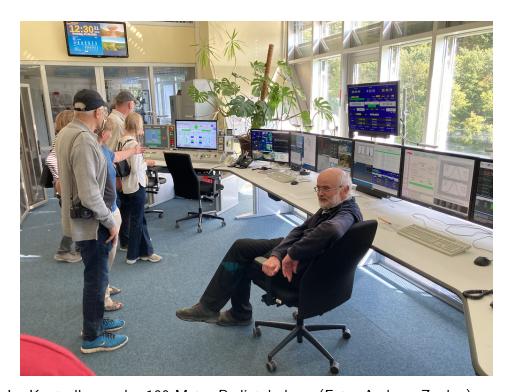
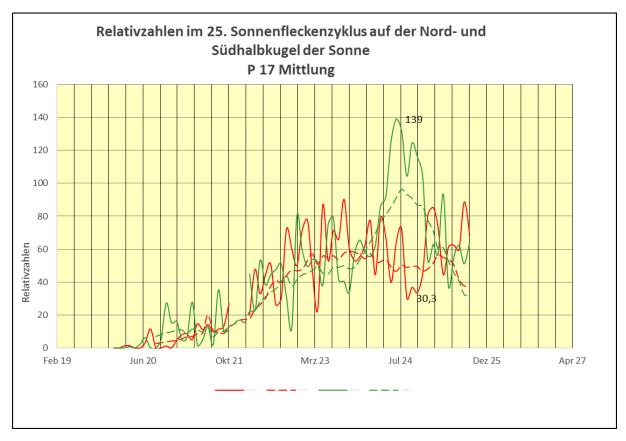


Abb. 6: Im Kontrollraum des 100-Meter-Radioteleskops (Foto: Andreas Zunker)

Quellen

[1]: https://www.asg.ed.tum.de/lpe/forschung/mondeinschlagsblitze/

[2]: https://solex.astrosurf.com/sol-ex-objective-en.html

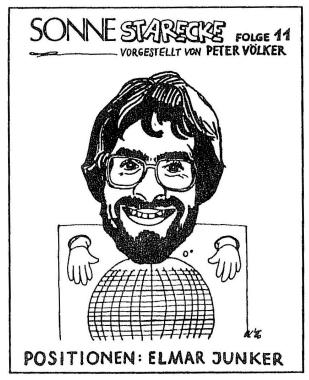

Andreas Zunker, Mörikeweg 14, 75015 Bretten, info@vds-sonne.de

Große Nord-Süd-Asymmetrie der Sonnenfleckenrelativzahl im Maximum des 25. Sonnenfleckenzyklus

Hubert Joppich

9. Oktober 2025

Nach eigenen Auswertungen stieg die Sonnenfleckenrelativzahl von 2020 an und erreichte 2024 ihr Maximum. Vom Jahr 2020 bis 2021 war die Schwankungsbreite der Relativzahl auf der Südhalbkugel größer. Die Nordhalbkugel zeigte hier relativ niedrige Schwankungswerte. 2021 bis Ende 2023 waren auf der Nord- sowie auf der Südhalbkugel größere Schwankungen. Das Maximum im Jahre 2024 überraschte mit einer großen Asymmetrie in der Sonnenfleckenrelativzahl. Der Spitzenwert bei meinen Messungen lag im Juli 2024 auf der Südhalbkugel (grün) bei 139. Im September 2024 erreichte die Nordhalbkugel (rot) einen Wert von nur 30,3. Im Diagramm ist das eindrucksvoll zu sehen.

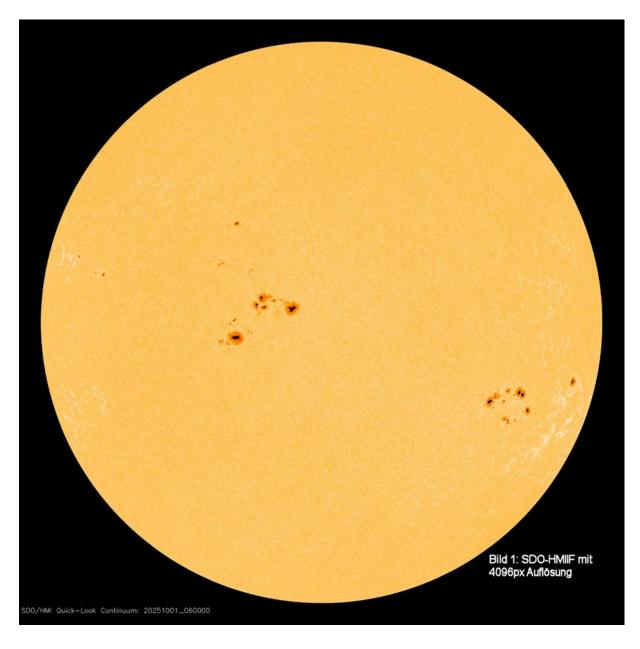

Von Anfang 2025 bis Sept. 2025 sind die Schwankungswerte im Norden und Süden wieder moderat im höheren Bereich. Wir können gespannt sein, wie sich der 25. Sonnenfleckenzyklus in der Abstiegsphase weiter entwickelt.

Hubert Joppich, Heideweg 5, 31840 Hess. Oldendorf

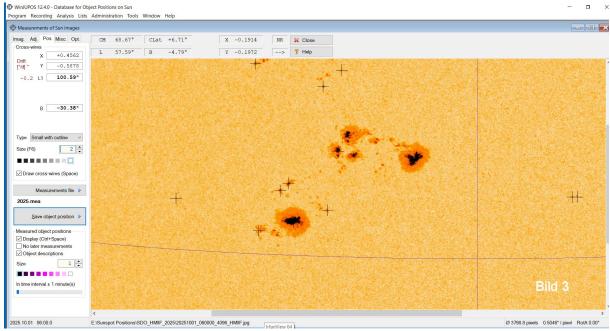
Synoptische Karten der Sonnenphotoshäre – oder wie ich sie generiere

Michael Möller 05. Oktober 2025

Ein kurzer Blick zurück nach 1999 sei mir gegönnt. In dem Jahr übernahm ich das SONNE-Positionsnetz von Natalie Fischer, die sich bis dahin zusammen mit Andreas Grunert mit der Sparte Auswertung der Positionen befasste. Noch weiter zurückliegend, so um 1980 herum, begannen Elmar Junker et.al. an der Uni Bonn mit der rechnergestützten Auswertung der Positionsmessungen diverser Beobachter. Für diese Arbeit wurde Software entwickelt und es lief fast zwanzig Jahre alles ohne Probleme, bis ein Nicht-Uni-Bonner, nämlich ich die Nachfolge antrat.

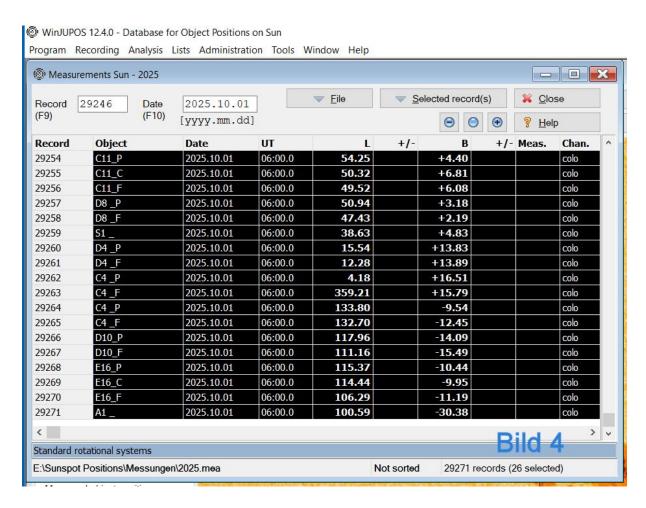


meine Bonner "Vorfahren"


Wat nu? Die Listen der Positionsbeobachter konnte ich ja noch mit MS-Word bearbeiten, doch dann mußte ich das File an Andreas Grunert weiterleiten, der den Inhalt an der Uni mit dem dortigen System verarbeitete und die nötigen Dateien sowie die synoptischen Karten erzeugte. Niemand hatte voher ernsthaft daran gedacht, die Programme für PC's lauffähig zu machen... 2000 oder war es 2001 hatte Andreas es geschafft, eine unter DOS lauffähige Version von Spotmap für Windows XP bereitzustellen (Windows XP verfügte noch über ein funktionierendes DOS). Danach konnte ich dann als "Einzelkämpfer" die Karten im Postscriptformat erzeugen. Fast unnötig zu sagen, dass alle anderen Auswerteprogramme und -Skripts von mir mühselig neu "erfunden" werden durften – so'n Schiet... Nach der Rotation 2168 (Oktober 2015) stellte ich krankheitsbedingt meine Arbeit ein, und erst irgendwann in 2021 mobilisierte ich noch einmal meine letzten Kräfte...

Um an die fertige Karte heranzukommen ist das übliche "Geraffel", Rechner mit allen nötigen Peripheriegeräten sowie eine Internetverbindung Voraussetzung. Zusätzlich kritzel ich mir schnelle Notizen etc. mit einem normalen Bleistift auf einen Zettel, was sich für die Endbearbeitung als sehr nützlich erwiesen hat. Die Nummern der Bilder sind im Text Fett, Kursiv und in Klammern wiedergegeben, z.B. (7).

Nun aber das Wichtigste, die Positionen, die leider von eigentlich allen Websites nicht in ausreichender Genauigkeit angeboten werden. Also selber messen. Momentan ist das Goddard Space Flight Center von Donald Trump's Finanzkürzungen betroffen, dafür funktioniert Stanford, wo vor fast zwei Jahren eine geborstene Kühlwasserleitung alle Hardware zerstörte. Aus Stanford lade ich viermal täglich die HMIIF-Frames von 0, 6, 12 und 18 Uhr UTC herunter (die auf dem Stanford-Server eine andere Bezeichnung tragen) herunter (1). HMIIF bedeutet übrigens soviel wie Bilder vom Helioseismic and Magnetic Imager, Images Flat des Solar Dynamics Observatory Satelliten.



Diese Bilder messe ich mit WinJUPOS von Grischa Hahn, Dresden, (2) und (3). Abbildung (4) zeigt einen Ausschnitt der Messungen für den Export der Daten, da diese noch einer besonderen Behandlung bedürfen. Mit POSCVT.EXE, dem ich ein Uralt-Script von 1982 zur Berechnung der physischen Sonnen-Ephemeriden "eingepflanzt" habe, berechne ich den Abstand der Messungen zum Zentralmeridian und speichere es in einem für mich praktikablen Format als Datei SDOC.TXT (5) ab. Von Links nach Rechts: Gesamtzahl aller Messungen eines Jahres, Gruppentyp (Waldmeier), P=p-Fleck, F=f-Fleck, c=je nach eigenem Bedarf Flecken dazwischen, S=Fleckenverdacht (suspected), nach einer größeren Lücke folgen nun die Länge des Zentralmeridians, Datum, Zeit in UTC, dann die Position des p-Flecks: AZM, Länge und Breite; Position des f-Flecks: .AZM, Länge und Breite. Diese im Editor geöffnete Datei klemme ich mit einer "Always on Top"-Funktion im unteren Display-Bereich fest und schreite nun zu

meiner Garten-, äh... Datenbank um diese Werte mit Apache Open Office in die Datei z.B. 2302_SDO_1.odt (6) einzutragen. Diese Vorgehensweise ist zwar noch wesentlich rationeller zu erledigen, doch fehlt es mir vor allem an Kraft da noch etwas Besseres zurechtzuschmieden. Diese eben beschriebenen Arbeitsgänge fallen viermal täglich über den Sichtbarkeitszeitraum einer Rotation an, der in der Regel 41 Tage umfaßt. Durchschnittlich 3.5 Stunden beträgt der tägliche Arbeitsaufwand – hochgerechnet auf eine(!) synoptische Karte 140 Stunden und mehr. Ja, wer Arbeit kennt und sich nicht drückt...

Zwischendurch werden die arithmetischen Mittel der Gruppen einer Rotation in der Länge absteigend durchnummeriert. Dazu ein Auszug aus dem Anfangsbereich (7) der Liste 2302_SDO_1.odt, die noch fast dem gleichen Format aus Bonner Zeiten entspricht. Für die weitere Verarbeitung sortiere ich diese Mittel in eine Tabelle, die in diesem Beispiel den Arbeitstitel 2302_work trägt (8). Die Tabelle wird zur Endauswertung in ein Text-File, Arbeit.TXT konvertiert und an den Orten gespeichert wo sie wirklich gebraucht werden, so vor allem im Folder für meine Selbstbauprogramme – und Scripts (die Bezeichnung Application, also Anwendung für meine bescheidenen Programme empfinde ich als Übertreibung und den Ausdruck App mag ich nicht).

Doch nun kommt die Krönung, die eigentliche Grundlage der synoptischen Karte, das Script SUNDRA starten, die Rotations-Nummer 2302 eingeben (9), und fertig ist der Rohling SUNDRA02.txt (10), der in der Regel keine Auffälligkeiten (Fehler) auweist. Bei den mit XX gekennzeichneten Feldern muß noch etwas per Hand eingetragen werden: Anzahl der verwendeten Messungen, Rotations-Nummer, Beginn und Ende des Sichtbarkeitszeitraums einer Rotation,

dann nochmals die Anz. der Messungen sowie die Anz. der gemessenen Fleckengruppen. Nun sind die wichtigsten Vorbereitungen geschafft, die Datei SUNDRA02.TXT ist komplett (11) und kann jetzt an meinen 3 erforderlichen Orten – wichtig hier SONNE Position/programm –2065 abgespeichert werden. Mit SUNKIST erzeuge ich mir noch das File GPPTYP.TXT, dessen Inhalt für die Stammdatei SPOTS.TYP erforderlich ist (12). Übrigens arbeite ich bei SPOTS.TYP nicht mit der kompletten Stammdatei, weil bei der Verarbeitung von mehr als 200 Gruppen in einer Rotation das Zeichenprogramm SPOTMAP.EXE nicht mehr mitmacht. Mit Hilfe der üblichen Trial-and-Error-Methode gelang es mir aber doch diesen Bug zu überlisten.

*SI	OOC.	TXT - Editor										
Datei	Bea	rbeiten Format	Ansicht Hilfe								Bild:	5
9246	0	A2 _P		68.67	2025.10.01	06:00	9.55	78.22	5.76			
9247	0	A2 _F		68.67	2025.10.01	06:00				9.05	77.72	5.77
9248	0	D19_P		68.67	2025.10.01	06:00	-5.84	62.83	9.59			
9249	0	D19_F		68.67	2025.10.01	06:00				-13.53	55.14	10.01
9250	0	J2 _		68.67	2025.10.01	06:00	-19.86	48.81	26.87			
9251	0	C15_P		68.67	2025.10.01	06:00	-13.64	55.03	17.74			
9252	0	C15_C		68.67	2025.10.01	06:00	-15.43	53.24	16.13			
9253	0	C15_F		68.67	2025.10.01	06:00				-22.72	45.95	18.04
9254	0	C11_P		68.67	2025.10.01	06:00	-14.42	54.25	4.40			
9255	0	C11_C		68.67	2025.10.01	06:00	-18.35	50.32	6.81			
9256	0	C11_F		68.67	2025.10.01	06:00				-19.15	49.52	6.08
9257	0	D8 _P		68.67	2025.10.01	06:00	-17.73	50.94	3.18			
9258	0	D8 _F		68.67	2025.10.01	06:00				-21.24	47.43	2.19
9259	0	S1 _		68.67	2025.10.01	06:00	-30.04	38.63	4.83			
9260	0	D4 _P		68.67	2025.10.01	06:00	-53.13	15.54	13.83			
9261	0	D4 _F		68.67	2025.10.01	06:00				-56.39	12.28	13.89
9262	0	C4 _P		68.67	2025.10.01	06:00	-64.49	4.18	16.51			
9263	0	C4 _F		68.67	2025.10.01	06:00				-69.46	359.21	15.79
9264	0	C4 _P		68.67	2025.10.01	06:00	65.13	133.80	-9.54			
9265	0	C4 _F		68.67	2025.10.01	06:00				64.03	132.70	-12.45
9266	0	D10_P		68.67	2025.10.01	06:00	49.29	117.96	-14.09			
9267	0	D10_F		68.67	2025.10.01	06:00				42.49	111.16	-15.49
9268	0	E16_P		68.67	2025.10.01	06:00	46.70	115.37	-10.44			
9269	0	E16_C		68.67	2025.10.01	06:00	45.77	114.44	-9.95			
9270	0	E16_F		68.67	2025.10.01	06:00				37.62	106.29	-11.19
9271	0	A1 _		68.67	2025.10.01	06:00	31.92	100.59	-30.38			

Nun das Finale. Nicht direkt in Windows 10 auszuführen, sondern in der Konsole. Irgendwie fühle ich mich dort richtig wohl, erinnert mich doch vieles an meine Anfangszeit 1982 mit einem Rechner 64 k Speicher, MS-DOS und einem Floppydisk-Laufwerk für 8" (20cm) Scheibletten mit der exorbitanten Speicherkapazität vom 78 kByte (SS/SD Single Sided / Single Density). Nostalgie beiseite, denn hier gebe ich ein: Spotmap Sundra02.txt, das Ausgabe-File ist für das Beispiel sun2302.ps (13), die synoptische Karte der Rotation 2302 als Postscript-Datei, mit dem Editor kann man in einer solchen Datei schnell Änderungen vornehmen, ganz im Gegensatz zu den handelsüblichen Bilddateien. Die Karte kann z.B. mit IrfanView betrachtet werden, wobei gravierende Fehler sofort ins Auge springen (14). Mit Corel PaintShop Pro wird das Ganze noch farblich aufgepeppt und als PNG-Grafik abgespeichert (15) – das war's. Zur bildlichen Darstellung habe ich bewußt die noch laufende Rotation 2302 gewählt und unfertige Karten erzeugt. Vielleicht traut sich ja ein Leser, diese Karte bis zum Ende der Rotation mit eigenen Positionen aufzufüllen...

										Bil	d 6
202510010000	f2	33.02	104.99	-12.09	4230				Е	Eai	16
202909301800	f2	29.71	104.98	-12.16	4230				E	Eai	17
202509300600	f3				4230	17.84	99.70	-13.16	E	Eai	21
202509300000	f2	17.92	103.08	-11.88	4230				Е	Eai	30
202509291800	f2	14.43	102.89	-12.10	4230		-3		E	Eai	28
202509291200	f2	10.96	102.72	-11.78	4230				E	Eai	23
202509290600	f2	7.29	102.35	-12.11	4230				E	Eai	24
202509290000	f2	3.94	102.30	-12.13	4230				Е	Eai	24
202509281800	f2	0.57	102.23	-12.33	4230				Е	Eai	20
202509281200	f2	-2.89	102.07	-12.23	4230				E	Eai	14
202509280600	f2	-5.59	102.67	-12.31	4230				Е	Eai	18
202509280000	f2	-9.08	102.48	-12.38	4230				С	Cai	16
202509271800	f2	-12.55	102.31	-12.58	4230		· ·		С	Csi	16
202509271200	f2	-15.94	102.22	-12.58	4230				Е	Esi	14
202509270600	f2+f	-19.27	102.18	-12.53	4230	-20.43	101.02	-11.82	E	Esi	13
202509270000	f2+f	-22.41	102.34	-12.32	4230	-23.86	100.89	-11.67	E	Esi	14

Posi	itionsbestii	mmung von Sonnenf	lecken Bild 7
Beobachter Solar Dynamics Obs.	Teleskop	<u>Methode</u>	Carrington-Nr. 2302
HMIIF Images 4096x4096 MMI	SDO-HMI	direkte Markierung Messung mit WinJUPOS	Monate/Jahr 09-10/2025

Beobachtungstage (fleckenfreie Tage unterstrichen): Bt = 30 Fft = 4

Monat: 09 Tag: <u>2-3-4-5</u>-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-25-26-27-28-29-30

Monat: 10 Tag: 1 Monat: 00 Tag: 0

GNr	Datum UTC	MT	AZM	-Lp-	-Вр-	-AR-	AZM	-Lf-	-Bf-	W	Mac	nn
	202509060600		-40.47	358.22	9.32	A1				Α	Axx	1
	202509061200		-37.10	358.29	9.22	A1				Α	Axx	1
	202509070600		-26.88	358.60	9.13	A1				Α	Axx	1
	202509071200		-23.55	358.63	9.19	A1				Α	Axx	1
1		4	0	358.44	9.22	A1		0	0	3		
	202509080600		-16.92	355.36	14.91	4218				A	Axx	1
	202509081200					4218	-15 53	353 45	15 63	Α	Axx	1

1	4	0	358.44	9.22	0	0	3
2	12	18	357.28	13.99	353.47	15.59	5
3	2	0	328.12	-9.80	0	0	3
4	8	0	302.28	20.84	0	0	3
5	8	2	295.60	23.18	292.24	20.98	4
6	29	31	287.60	25.07	282.91	26.95	5
7	4	7	284.84	-15.98	281.94	-16.70	4
8	5	0	249.72	6.65	0	0	3
9	52	25	249.14	10.20	242.83	10.46	6
10	40	35	247.52	-18.58	239.11	-17.04	7
11	19	19	237.63	13.57	234.07	12.89	4
12	3	0	237.58	23.79	0	0	3
13	50	26	216.15	3.65	210.46	4.63	6
14	25	11	214.88	-9.94	210.40	-9.76	4
15	16	20	214.55	-13.15	211.98	-14.14	5
16	20	10	214.00	-24.50	211.10	-24.94	4
17	51	16	213.45	-15.41	202.27	-18.30	7
18	26	24	203.37	-13.69	191.54	-17.45	6
19	20	15	199.20	-3.29	194.90	-5.63	6
20	6	13	193.68	-17.52	188.09	-19.22	4
21	23	13	188.92	-7.69	186.67	-7.36	5
22	9	0	188.56	12.29	0	0	3
23	54	17	176.78	10.10	174.10	8.55	Bild 8
24	7	2	172.00	20.70	174 20	20.02	DIIU 0

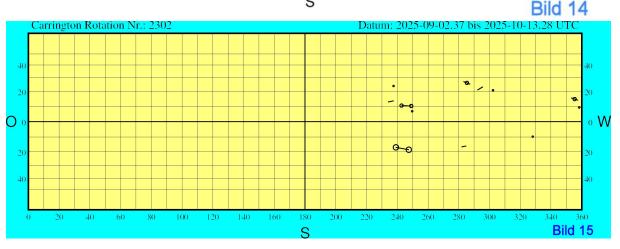
****** Pore33 ******

Generierung von SUNDRA-Dateien für Windows 10 und DOS-Box angepaßt von Michael Möller 16./17. April 2021

Rotation Nr.: 2302

Ausgabedatei ist Sundra02.txt

Ende!


Bild 9

SDO (Moeller) xx	D:14 40
SYNODISCHE SONNENROTATION NR. 22xx	Bild 10
ROTATIONSBEGINN: 2025-xx-xx.xx ROTATIONSENDE: 2025-xx-xx.xx	
ES HABEN 1 BEOBACHTER INSGESAMT XX MESSUNGEN AN X SONNENFLECKENGRUPPEN GEMACHT	

Def-Nr	Lfd-Nr	Laenge P	Sigma-LP	Breite P	Sigma-BP	Laenge F	Sigma-LF	Breite F	Sigma-BF	Beotg P	Beotg F	Т	ур
1	1	358.4	0.0	9.2	0.0	0.0	0.0	0.0	0.0	4	0	Α	3.0
2	2	357.3	0.0	14.0	0.0	353.5	0.0	15.6	0.0	12	18	C	5.0
3	3	328.1	0.0	-9.8	0.0	0.0	0.0	0.0	0.0	2	0	A	3.0
4	4	302.3	0.0	20.8	0.0	0.0	0.0	0.0	0.0	8	0	A	3.0
5	5	295.6	0.0	23.2	0.0	292.2	0.0	21.0	0.0	8	2	В	4.0
6	6	287.6	0.0	25.1	0.0	282.9	0.0	27.0	0.0	29	31	C	5.0
7	7	284.8	0.0	-16.0	0.0	281.9	0.0	-16.7	0.0	4	7	В	4.0
8	8	249.7	0.0	6.7	0.0	0.0	0.0	0.0	0.0	5	0	A	3.0
9	9	249.1	0.0	10.2	0.0	242.8	0.0	10.5	0.0	52	25	D	6.0
10	10	247.5	0.0	-18.6	0.0	239.1	0.0	-17.0	0.0	40	35	E	7.0
11	11	237.6	0.0	13.6	0.0	234.1	0.0	12.9	0.0	19	19	В	4.0
12	12	237.6	0.0	23.8	0.0	0.0	0.0	0.0	0.0	3	0	Α	3.0
13	13	216.1	0.0	3.7	0.0	210.5	0.0	4.6	0.0	50	26	D	6.0
14	14	214.9	0.0	-9.9	0.0	210.4	0.0	-9.8	0.0	25	11	В	4.0
15	15	214.6	0.0	-13.1	0.0	212.0	0.0	-14.1	0.0	16	20	C	5.0
16	16	214.0	0.0	-24.5	0.0	211.1	0.0	-24.9	0.0	20	10	В	4.0
17	17	213.4	0.0	-15.4	0.0	202.3	0.0	-18.3	0.0	51	16	E	7.0
18	18	203.4	0.0	-13.7	0.0	191.5	0.0	-17.5	0.0	26	24	D	6.0
19	19	199.2	0.0	-3.3	0.0	194.9	0.0	-5.6	0.0	20	15	D	6.0
20	20	193.7	0.0	-17.5	0.0	188.1	0.0	-19.2	0.0	6	13	В	4.0
21	21	188.9	0.0	-7.7	0.0	186.7	0.0	-7.4	0.0	23	13	C	5.0
22	22	188.6	0.0	12.3	0.0	0.0	0.0	0.0	0.0	9	0	A	3.0
23	23	176.8	0.0	10.1	0.0	174.1	0.0	8.6	0.0	54	17	D	6.0
24	24	173.9	0.0	-28.8	0.0	171.3	0.0	-28.8	0.0	7	2	В	4.0
25	25	162.9	0.0	25.6	0.0	0.0	0.0	0.0	0.0	4	0	A	3.0
26	26	160.3	0.0	7.1	0.0	155.6	0.0	9.2	0.0	14	21	В	4.0
27	27	144.5	0.0	-27.3	0.0	0.0	0.0	0.0	0.0	3	0	Α	3.0
28	28	142.6	0.0	-16.1	0.0	139.2	0.0	-16.9	0.0	15	16	C	5.0

ROTATIO	NSBEGINN	ENROTATION	02.37	ROTATIONSE			ICOLIDDEN CE	MA CUT			Bild 1	1	
E2 HABE	N 1 BEOB	SACHIER INS	GESAMI 876	MESSUNGEN	AN 28 SUN	INENFLECKEN	IGRUPPEN GE	MACHI					
Def-Nr	Lfd-Nr	Laenge P	Sigma-LP	Breite P	Sigma-BP	Laenge F	Sigma-LF	Breite F	Sigma-BF	Beotg P	Beotg F	T	yp
1	1	358.4	0.0	9.2	0.0	0.0	0.0	0.0	0.0	4	0	A	3.
2	2	357.3	0.0	14.0	0.0	353.5	0.0	15.6	0.0	12	18	C	5.
3	3	328.1	0.0	-9.8	0.0	0.0	0.0	0.0	0.0	2	0	Α	3.
4	4	302.3	0.0	20.8	0.0	0.0	0.0	0.0	0.0	8	0	A	3.
5	5	295.6	0.0	23.2	0.0	292.2	0.0	21.0	0.0	8	2	В	4.
6	6	287.6	0.0	25.1	0.0	282.9	0.0	27.0	0.0	29	31	C	5.
7	7	284.8	0.0	-16.0	0.0	281.9	0.0	-16.7	0.0	4	7	В	4.
8	8	249.7	0.0	6.7	0.0	0.0	0.0	0.0	0.0	5	0	A	3.
9	9	249.1	0.0	10.2	0.0	242.8	0.0	10.5	0.0	52	25	D	6.
10	10	247.5	0.0	-18.6	0.0	239.1	0.0	-17.0	0.0	40	35	E	7.
11	11	237.6	0.0	13.6	0.0	234.1	0.0	12.9	0.0	19	19	В	4.
12	12	237.6	0.0	23.8	0.0	0.0	0.0	0.0	0.0	3	0	A	3.
13	13	216.1	0.0	3.7	0.0	210.5	0.0	4.6	0.0	50	26	D	6.
14	14	214.9	0.0	-9.9	0.0	210.4	0.0	-9.8	0.0	25	11	В	4.
15	15	214.6	0.0	-13.1	0.0	212.0	0.0	-14.1	0.0	16	20	C	5.
16	16	214.0	0.0	-24.5	0.0	211.1	0.0	-24.9	0.0	20	10	В	4.
17	17	213.4	0.0	-15.4	0.0	202.3	0.0	-18.3	0.0	51	16	E	7.
18	18	203.4	0.0	-13.7	0.0	191.5	0.0	-17.5	0.0	26	24	D	6.
19	19	199.2	0.0	-3.3	0.0	194.9	0.0	-5.6	0.0	20	15	D	6.
20	20	193.7	0.0	-17.5	0.0	188.1	0.0	-19.2	0.0	6	13	В	4.
21	21	188.9	0.0	-7.7	0.0	186.7	0.0	-7.4	0.0	23	13	C	5.
22	22	188.6	0.0	12.3	0.0	0.0	0.0	0.0	0.0	9	0	Α	3.
23	23	176.8	0.0	10.1	0.0	174.1	0.0	8.6	0.0	54	17	D	6.
24	24	173.9	0.0	-28.8	0.0	171.3	0.0	-28.8	0.0	7	2	В	4.
25	25	162.9	0.0	25.6	0.0	0.0	0.0	0.0	0.0	4	0	Α	3.
26	26	160.3	0.0	7.1	0.0	155.6	0.0	9.2	0.0	14	21	В	4.
27	27	144.5	0.0	-27.3	0.0	0.0	0.0	0.0	0.0	3	0	Α	3.
28	28	142.6	0.0	-16.1	0.0	139.2	0.0	-16.9	0.0	15	16	C	5.

```
GRPTYP.TXT aus Skript SUNKIST
2302 acaabcbadebadbcbeddbcadbabac (28 Gruppen)
... und hier der Eintrag in SPOTS.TYP
1849 x x x
2301
2302 acaabcbadebadbcbeddbcadbabac (28 Gruppen)
                                                                         Bild 12
E:\SONNE Position\programm>Spotmap Sundra02.txt
Das infile lautet: Sundra02.txt
File: Sundra02.txt
File: spots.typ
gelesen: 1849 x x x
buffnr+1= 1850
                rotnr = 2302
gelesen: 2301
buffnr+1= 2302
                rotnr = 2302
Jetzt wurde Rot 2302 gefunden!
        1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Nr.:
        A C A A B C B A D E B A D B C B E D D B C A D B A B A C A C A A B C B A D E B A D B C B E D D B C A D B A B A C
alt:
neu:
Rotation 2302 hat im File spots.typ 28 Flecken.
Mit den neuen Typen scheint alles ok zu sein...
File: sun-ps2.inc
Das Ausgabefile heisst: sun2302.ps
                                                                          Bild 13
File: sun2302 no
                                                   Datum: 2025-09-02.37 bis 2025-10-13.28 UTC
      Carrington Rotation Nr.: 2302
    20
                                                                                  o W
  0 0
                                                  8
    20
                                           S
```


Relativzahlnetz SONNE – Monatsübersicht April 2025

Tag	Grup	penza	hlen	Rela	ativzah	len	And	lere Ind	ices	Anz	ahl Be	ob.
	Nord	Süd	ges.	Nord	Süd	ges.	SIDC	AAVS() Re'	N/S	ges.	Re'
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.	2.1 2.5 2.9 2.8 3.0 3.0 2.6 2.8 3.2 3.5 3.3 2.8 3.0 2.5 1.9	3.3 2.5 2.4 4.5 4.2 4.0 3.4 2.9 2.8 2.5 1.8 1.5 0.9 0.9 1.4 2.1	5.4 5.0 5.3 7.3 7.1 7.0 6.0 5.7 6.0 6.0 5.1 4.3 4.0 3.4 3.3 4.0	38 42 46 41 41 36 32 34 47 55 58 58 57 44 35 32	63 53 62 83 80 77 73 59 47 36 24 19 11 10 18 28	95 108 124 121 113 105 93 94 91 82 77 67 54 53 60	159 149 165 192 188 179 161 147 140 139 131 122 106 87 75 90	98 95 98 109 107 107 96 93 93 86 83 76 62 51 47 58	1538 1577 2023 2211 2133 2075 2204 1651 1255 1101 956 1227 1038 680 532 673	7 9 11 10 8 9 6 8 9 11 10 9 6 8 7	19 19 26 24 21 24 17 19 19 21 20 21 10 23 17 18	8 7 11 10 10 9 8 5 8 10 9 8 6 10 7
16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29.	1.8 2.0 1.9 1.9 2.2 2.1 1.4 1.1 2.3 2.7 2.8 2.2 1.8	2.1 2.7 3.2 3.2 3.3 4.1 5.9 5.3 6.4 5.4 4.1 4.0 3.3 1.9	4.0 4.7 5.0 5.5 6.2 7.3 6.4 8.7 8.2 8.3 5.9 5.5 3.6	32 32 28 30 35 33 26 25 45 47 40 29 21 29 27	28 37 49 53 52 61 88 79 92 77 71 54 57 47 29	60 69 78 84 87 94 114 104 137 123 111 83 79 76 56	109 117 116 133 141 186 164 201 198 173 132 121 110 88	58 63 76 77 74 78 102 105 122 118 102 88 76 71 52	673 656 1054 1029 1011 972 1384 1490 1702 1706 961 731 669 703 635	9 6 4 9 8 10 6 4 8 12 11 12	18 11 8 10 19 18 18 14 9 10 20 23 26 23 26	5 3 5 8 6 6 8 5 3 6 9 11 9
Monats- mittel	2.4	3.3	5.7	38.1	53.0	91.1	140.6	85.4	1253	8	18	8
Beob tage	30	30	30	30	30	30	30	30	30			

Relativzahlnetz SONNE - Monatsübersicht Mai 2025

Tag		penza			ativzah	len		dere Ind		l	ahl Be	
	Nord	Süd	ges.	Nord	Süd	ges.	SIDC	AAVS	O Re'	N/S	ges.	Re'
1.	1.2	1.5	2.7	26	20	46	63	39	718	7	23	7
2.	1.3	0.4	1.7	27	5	32	42	32	695	8	23	9
3.	1.6	0.7	2.3	35	9	44	58	35	749	5	15	5
4.	2.1	1.5	3.5	42	19	60	76	57	932	4	11	4
5.	2.7	0.7	3.4	57	12	69	94	69	1343	7	15	5
6.	2.1	0.7	2.9	52	14	66	89	62	1320	7	16	4
7.	1.5	0.7	2.2	43	14	57	75	56	1280	7	15	5
8.	1.4	1.5	3.0	37	24	61	81	63	1057	6	17	5
9.	1.5	1.6	3.1	32	21	53	73	55	860	9	22	7
10.	1.8	1.7	3.5	27	22	49	71	52	347	6	17	6
11.	2.2	1.3	3.5	32	16	48	66	49	317	8	23	7
12.	2.1	1.5	3.6	27	19	46	60	44	265	9	20	8
13.	2.7	1.0	3.7	36	12	48	58	44	280	10	23	8
14.	1.7	0.9	2.7	23	10	34	47	29	266	10	20	7
15.	1.6	0.6	2.2	25	6	31	41	27	338	6	19	5
16.	2.8	0.5	3.3	40	6	45	59	37	454	7	19	9
17.	2.3	1.0	3.3	33	13	46	51	37	347	4	14	7
18.	1.8	1.6	3.4	25	22	47	55	39	337	6	16	6
19.	1.5	2.3	3.7	21	27	48	65	43	414	7	17	6
20.	2.1	2.3	4.5	30	27	57	74	48	361	8	22	7
21.	2.3	2.9	5.2	29	37	66	91	56	490	8	20	8
22.	2.5	3.1	5.6	29	39	68	98	70	467	7	13	4
23.	2.1	4.3	6.3	26	58	84	117	82	623	6	15	7
24.	2.5	3.3	5.7	29	48	77	99	69	609	5	14	5
25.	1.5	4.0	5.5	16	56	72	97	68	698	5	10	4
26.	1.7	4.4	6.1	20	59	79	111	73	683	7	18	7
27.	2.4	2.7	5.1	30	40	70	104	68	749	6	12	5
28.	2.6	2.5	5.1	41	37	78	108	71	806	7	12	4
29.	2.7	2.4	5.0	43	38	81	100	67	1042	6	16	7
30.	3.0	1.7	4.7	58	30	88	117	79	1670	6	19	8
31.	3.2	1.0	4.3	72	22	94	115	82	2261	8	22	9
Monats-												
mittel	2.1	1.8	3.9	34.3	25.2	59.5	79.2	54.9	735	7	17	6
Beob tage	31	31	31	31	31	31	31	31	31			

Vergleich der Relativzahlen: SONNE-SIDC SONNE-AAVSO SIDC-AAVSO K-Faktor: 0.751 1.083 1.442 Korrelationskoeffizient: 0.98 0.96 0.98 Streuung: - 13.96 - Vergleichstage: 31 31 31

Relativzahlnetz SONNE - Monatsübersicht Juni 2025

Tag		penza			ativzah	len		lere Indi			ahl Be	
	Nord	Süd	ges.	Nord	Süd	ges.	SIDC	AAVSC) Re'	N/S	ges.	Re'
1	2.4	0.0	4.0	C7	10	0.5	105	7.4	1 400		10	4
1.	3.4	8.0	4.2	67	18	85 73	125	74	1499	6	13	4
2.	3.0	0.9 1.3	3.9	56	17	73	109 94	64 55	1214	8 7	18	6
3. 4.	2.4 2.5	1.3 1.4	3.6 4.0	44 41	20 26	64 67	94	55 55	1085 940	7	17 15	5 6
5.	2.3	1.6	3.9	38	26	65	88	54	1032	8	14	5
6.	1.9	2.4	4.3	27	41	68	100	50	868	7	16	8
7.	1.9	3.0	4.0	13	50	63	87	48	809	4	8	3
8.	0.4	2.6	3.0	5	47	52	58	40	772	4	9	2
9.	1.5	1.9	3.3	20	38	57	91	59	822	9	18	10
10.	1.5	2.5	4.0	21	54	75	115	65	1242	6	10	6
11.	2.8	3.2	6.0	34	58	93	147	77	1226	10	24	11
12.	3.6	2.6	6.2	47	51	98	144	86	1207	9	25	10
13.	3.8	2.4	6.2	60	43	103	154	91	1299	10	26	10
14.	3.6	2.5	6.1	65	40	105	158	86	1605	9	22	9
15.	3.8	1.7	5.5	66	27	93	153	74	1608	6	15	7
16.	3.6	1.0	4.5	71	13	84	130	72	1459	8	18	7
17.	3.1	0.9	4.0	64	13	77	120	64	1514	9	25	10
18.	2.9	2.0	5.0	58	29	87	136	78	1470	11	20	8
19.	2.5	2.5	5.0	48	35	84	134	77	1577	11	25	12
20.	2.7	2.2	4.9	44	30	74	116	63	1092	10	25	12
21.	1.9	2.5	4.4	29	35	64	95	53	912	9	20	9
22.	1.7	2.4	4.0	21	40	62	99	57	871	9	20	9
23.	1.6	2.6	4.2	18	46	64	94	47	660	6	12	5
24.	1.2	2.9	4.1	14	48	62	85	49	635	7	16	7
25.	1.2	2.6	3.8	22	41	63	96	53	676	11	22	10
26.	1.9	2.6	4.5	32	41	73	105	59	791	10	16	7
27.	2.1	3.6	5.7	34	46	80	118	67	631	9	18	8
28.	3.3	3.7	7.0	47	44	91	137	76	568	7	18	7
29.	3.3	4.4	7.7	46	57	103	152	90	676	8	20	8
30.	2.9	4.0	7.0	42	56	99	153	83	764	11	25	11
Monats-												
mittel	2.5	2.4	4.8	39.8	37.7	77.6	116.3	65.5	1051	8	18	8
Beob tage	30	30	30	30	30	30	30	30	30			

Liste der Beobachter 2. Quartal 2025

Name	Instrument	В	eob.tag			-Faktore		S	r
		ges.	N/S	Re'	Re	g	Re'		
Chudy,M.	Refr. 60/ 700	15	0	0	0.985	0.810	-	18	0.94
Hecht,P.	Refr. 100/ 0	29	0	0	0.911	0.840	-	11	0.91
Hermelingmeier, H		45	0	0	0.864	0.871	-	13	0.91
Moeller, M. (Db)	Refr. 140/4953	91	91	91	0.457	0.481	0.883	15	0.86
Moeller, M. (Dc)	Refr. 140/4953	91	91	91	0.536	0.522	1.155	16	0.85
Selbmann, U. Sinnecker, S.	Refr. 63/ 840 Refr. 81/ 0	21 25	0 0	0	0.769 0.618	0.873 0.690	-	14 13	0.93
Silliecker,S.	iteli. 01/ 0	23	U	U	0.010	0.090	_	13	0.90
Bezugsbeobachte	r:								
Araujo,G.	Refr. 80/ 910	90	0	0	0.514	0.572	_	12	0.92
Barsch,T.	Refr. 102/1000	77	77	0	0.435	0.580	-	12	0.93
Bretschneider,H.	Refr. 63/ 840	40	40	40	0.596	0.654	1.540	27	0.79
Brettel,G.	Refr. 90/1000	54	54	54	0.748	0.756	1.550	10	0.95
Bronst, M.	Refr. 102/ 0	72	0	0	0.710	0.715	-	10	0.94
Bruegger,S.	Refr. 80/ 400	67	0	67	0.738	0.778	1.414	10	0.97
Daub,KP.	Refr. 152/1200	51	0	0	0.641	0.661	-	8	0.97
Fritsche,S.	Refr. 63/ 840	70	0	0	0.702	0.740	1 010	10	0.95
Hoerenz, M.	Refr. 60/ 700	49	0	49	0.682	0.679	1.210	11	0.91
Hurbanovo Obs.	Refr. 150/2250	48 29	48 0	48 29	0.633 0.714	0.696 0.725	0.957 1.372	10 17	0.95 0.84
Joppich,H. Junker,E.	Refr. 102/ 714 Refr. 50/ 600	39	0	39	0.714	0.723	1.553	12	0.04
Kaczmarek,A.	Refr. 80/ 400	23	0	0	0.484	0.759	1.555	18	0.93
Kandilli Obs.	Refr. 200/3070	73	73	0	0.832	0.820	_	16	0.88
Kysucka Obs.	Refr. 200/3000	46	46	Ö	0.617	0.693	_	15	0.90
Maluf,W.	Refr. 102/1500	68	0	0	0.712	0.611	_	15	0.85
Meister,S.	Refr. 125/ 800	16	0	16	0.569	0.659	0.996	15	0.96
Noy, J.R.	Refr. 80/ 640	68	0	68	0.852	0.730	1.800	14	0.89
Rim. Sobota Obs	,	24	24	24	0.746	0.774	1.332	14	0.94
Rockmann,K.	Refr. 90/1200	40	_0	40	0.705	0.681	1.396	9	0.95
Ruemmler,F.	Refr. 80/1200	77	77	0	0.786	0.785	-	15	0.93
Seiffert,HP.	Refr. 100/ 500	22	0	0	0.944	0.927	-	8	0.98
Stolzen,P.	Refr. 40/ 500	79	0	0	1.059	0.870	-	15	0.82
Stoyan,R. Tiendesprong Obs	Refr. 50/ 540	18 63	0 63	0	0.782 0.704	0.783 0.744	-	12 10	0.92 0.93
WFS,Berlin	Refr. 150/2250	21	21	0	0.764	0.744	-	12	0.93
** Anzahl Beoba	chtungen:	1641	(N/S·	705	; Re':	656)**	•		
** Anzahl Beob			(N/S:		; Re':	13)**			

Legende:

Beob.tage: Anzahl Beobachtungstage für:

ges. N/S Re': Relativzahl (gesamt, Nord/Süd, Beck)

k-Faktoren: zur Reduktion der Daten verwendete k-Faktoren

Auswertungen

für Relativzahlen, Gruppenzahlen, Beck'sche Re. Re g Re': Streuung der Relativzahlen (bezogen auf Re=100) s:

Korrelationskoeffizient zur Bezugsrelativzahl r:

Beobachter mit weniger als 5 Beobachtungen wurden nicht berücksichtigt.

Quellen der täglichen Relativzahlen, verwendet für monatliche Übersichten und statistische Auswertungen:

- AAVSO: Monatliches "Solar Bulletin", The American Association of Variable Star Observers, Solar Section, abrufbar unter https://www.aavso.org/solar-bulletin, ISSN 0271-8480.
- Kandilli Obs.: B.U. Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü Astronomi Laboratuvarı (Bogazici-Universität, Kandilli Observatorium und Institut für Erdbebenforschung; https://astronomi.bogazici.edu.tr/aylik-leke-sayilari)
- SIDC: "Monthly SILSO report" per Mail, abrufbar als "Monthly Bulletin" unter https://www.sidc.be/silso/sunspotbulletin; SILSO data, Royal Observatory of Belgium, Brussels (SILSO Daten, Königliche Sternwarte von Belgien, Brüssel).

Fackelaktivität im 2. Quartal 2025

Michael Delfs 06. Oktober 2025

Tag		1	April		Mai				Juni			
	Fo	Fm	FEF	FEP	Fo	Fm	FEF	FEP	Fo	Fm	FEF	FEP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Mittel:	80 30 50 37 50 40 50 30 15 27 30 43 25 30 55 40 30 1-1 40 30 43 40 50 40 40 40 40 40 40 40 40 40 40 40 40 40	30 15 13 20 33 47 50 40 25 33 37 33 15 20 45 20 -1 23 55 50 23 60 70 70 37 33 40 25 37 37 37 37 37 37 37 37 37 37 37 37 37	380 235 577 620 433 760 415 517 495 430 467 713 245 200 550 845 740 -1 1993 625 1750 263 280 380 960 537 620 860 1580 1580	170 70 145 155 80 55 80 100 95 540 135 140 150 155 0 -1 100 100 0 75 160 460 205 125 150 85 135 140 150 150 160 160 175 175 175 175 175 175 175 175	60 30 90 80 70 100 80 90 60 35 40 25 30 45 50 40 30 30 50 -1 80 90 45 75 58	15 0 20 30 20 20 20 25 15 20 25 25 40 40 20 40 15 30 60 -1 30 50 50 20 27	325 170 340 320 330 250 300 250 170 195 240 305 300 270 340 350 270 380 360 370 380 380 380 380 380 380 380 380 380 38	360 -1 60 370 310 250 210 180 140 60 330 360 280 250 410 170 300 260 380 220 -1 150 280 270 360 -1 220 200 160 250 250 250 250 250 250 250 25	70 30 50 60 50 45 -1 30 20 35 65 30 23 50 27 23 27 13 28 33 -1 30 40 40 40 40 40 40 40 40 40 40 40 40 40	20 30 50 50 70 25 -1 15 10 45 33 40 25 10 7 20 3 43 20 -1 0 3 10 60 50 50 60 50 50 50 60 60 60 60 60 60 60 60 60 6	360 190 280 400 360 285 -1 -1 220 220 305 435 330 305 210 137 167 270 230 1100 1010 -1 170 93 245 360 520 365 315 -1 341	190 280 190 170 260 280 -1 -1 180 -1 85 90 170 100 0 330 195 125 80 200 155 95 -1 -1 130 145 230 120 75 130 -1
Tage:	28	28	28 on 30)	28	29	29	292 29 n 31)	28	27	27	27 on 30)	25

Erklärung der Daten:

Fo: Flächenfackelgebiete ohne Flecken; Fm: Flächenfackelgebiete mit Flecken;

FEF: Zahl der einzelnen Fackeln in den Flächenfackelgebieten;

FEP: Zahl der einzelnen Punktfackeln außerhalb der Flächenfackelgebiete -

ohne Polfackeln;

Der Wert "-1" bedeutet: es liegt keine Beobachtung vor. Alle anderen Zahlen sind mit dem Faktor 10 multiplizierte Mittelwerte aller Beobachter eines Tages.

Beobachter: T. Barsch, H. Bretschneider, M. Delfs (WFS-Berlin), E. Junker Instrumente: Refraktoren und Reflektoren von 50/600 bis 150/2250 mm

A-Netz: Sonnenflecken mit bloßem Auge

Naked Eye Sunspot Numbers

Steffen Fritsche

	APRIL 2025											
Tag	Min	Max	Modal	Beob.	Mittel	GFOES						
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31		2 4 3 3 4 0 1 1 0 0 1 1 1 1 1 2 2 2 2 2 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11 11 15 13 9 11 9 10 10 10 11 12 5 11 7 7 4 3 8 11 10 6 7 4 4 10 13 11 13 11 12	0,5 1,0 0,9 0,8 0,6 0,0 0,1 0,1 0,0 0,2 0,2 0,0 0,1 0,1 0,3 0,6 0,5 0,6 0,7 0,4 0,5 0,0 0,0 0,0 0,0 0,0	0,4 0,6 1,3 1,3 0,6 0,3 0,2 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0						
Mitte Fleck	el cenfreic	e Tage			0,32	0,18 19						

A-Netz: Sonnenflecken mit bloßem Auge

Naked Eye Sunspot Numbers

Steffen Fritsche

	MAI 2025											
Tag	Min	Max	Modal	Beob.	Mittel	GFOES						
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 31 31 31 31 31 31 31 31 31 31 31	0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0	1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0	13 12 7 6 8 8 9 8 11 11 12 10 11 11 8 8 7 7 8 8 7 6 6 6 2 8 5 4 5 9 13	1,0 1,0 1,0 1,0 1,0 1,0 1,0 0,4 0,1 0,0 0,0 0,0 0,0 0,3 0,4 0,4 0,4 0,4 0,4 0,0 0,0 0,0 0,0 0,0	0,8 1,0 0,9 1,0 1,0 1,0 1,0 0,5 0,8 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0						
Mitte Fleck	el enfreie	e Tage			0,50 9	0,42 13						

A-Netz: Sonnenflecken mit bloßem Auge

Naked Eye Sunspot Numbers

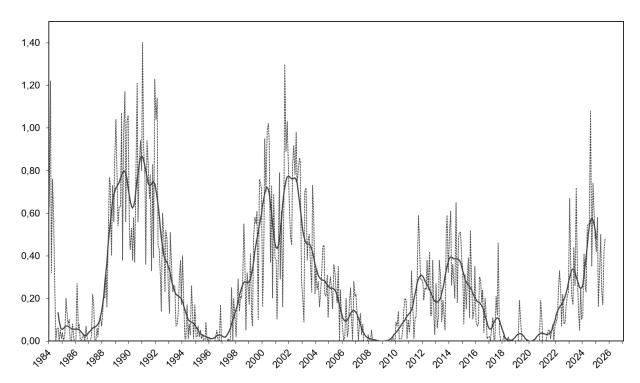
Steffen Fritsche

	JUNI 2025											
Tag	Min	Max	Modal	Beob.	Mittel	GFOES						
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31		2 2 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 7 8 7 4 7 6 6 6 8 13 12 10 7 10 13 11 11 12 10 9 7 8 9 8 7 9 13 12 10 9	1,0 0,7 0,4 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,2 0,1 0,0 0,3 0,6 0,5 0,3 0,4 0,1 0,0 0,0 0,0 0,0	1,0 0,4 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0						
Mitte Fleck	el enfreie	e Tage			0,24 13	0,17 19						

Beobachter 2. Quartal 2025 (Anzahl der Beobachtungen)

Bretschneider (57), Brettel (54), Bronst (72), Eiglsperger (60), Fritsche (80), Hermelingmeier (48), Hörenz (82), Junker (39), kysobs (46), Rockmann (31), Sinnecker (25), Spaninks (63), Spiess (75), Tittel (26), Thomas (43)

Total 801 Beobachtungen von 15 Beobachtern

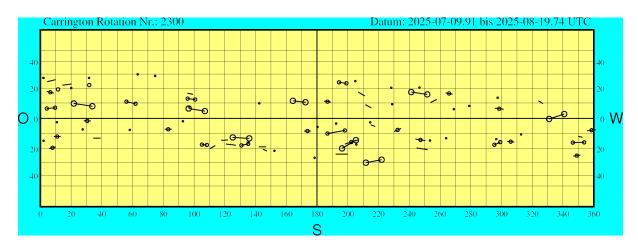

Die aktuelle Auswertung kann auf den SONNE-Seiten unter www.vds-sonne.de aufgerufen werden.

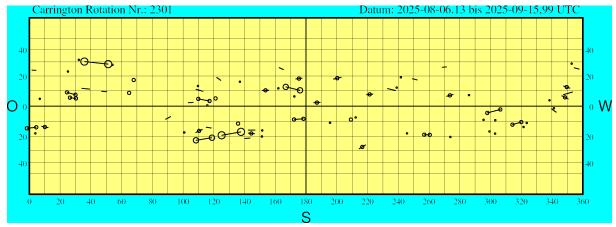
Das vierte Maximum, das vom A-Netz beobachtet wurde ist mit ziemlicher Sicherheit vorüber und lag mit einem P17-Mittel von 0,58 im September 2024. Trotzdem sind immer wieder große Fleckengruppen sichtbar. Sie liegen aber teilweise an der Sichtbarkeitsgrenze und sind dadurch nicht immer für alle Beobachter erkennbar.

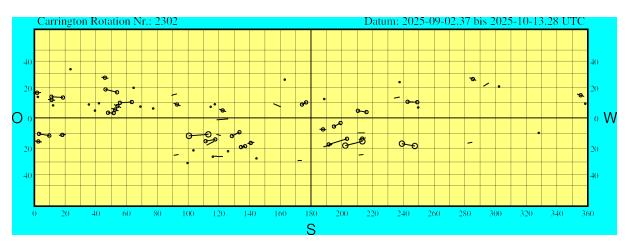
Leider senden nur noch 15 Beobachter ihre Ergebnisse ein. Hoffentlich werden es nicht noch weniger, wenn es jetzt auf das Minimum zugeht. Es wäre sehr Schade, wenn unsere lange Beobachtungsreihe größere Lücken bekommen würde. Wir decken inzwischen immerhin 41 Jahre ab.

Also dran bleiben und neue Beobachter motivieren!

Steffen Fritsche, Steinacker 33, 95189 Köditz


Die Monats- und P17-Mittel des A-Netzes von 1984–2025.

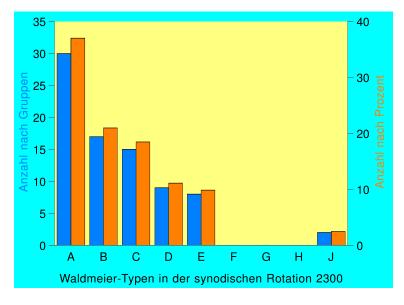

Synoptische Karten der Sonnenphotosphäre der synodischen Carringtonrotationen 2300–2302

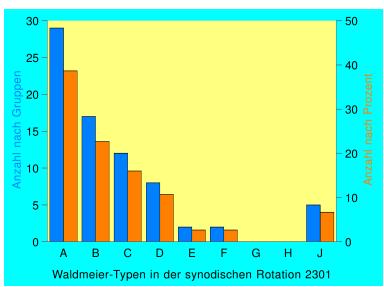

Michael Möller

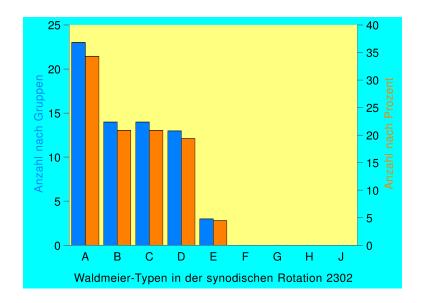
20. September/ 13. Oktober 2025

Positionen gemessen auf HMIIF Bildern (4096×4096 Format) des Solar Dynamic Observatory (SDO).

Legende:
$$A \cdot D \hookrightarrow G \circ \circ$$


$$B - E \hookrightarrow H \circ$$


$$C \circ F \hookrightarrow J \circ$$


Typenstatistik der Rotationen 2300-2302

Michael Möller

20. September/ 13. Oktober 2025

Sonnenfleckenpositionen zu den synoptischen Karten der Rotationen 2300–2302

Michael Möller

20. September/ 13. Oktober 2025

Erläuterung zu den Tabellen:

Die Tabelle gibt die Positionen der p- und f-Flecken in Länge und Breite an. Die Spalten Anz. Beo. enthalten die Anzahl der Beobachtungen eines jeden Fleckes. In der folgenden Spalte befindet sich die Typklassifikation der jeweiligen Fleckengruppe. Der Abstand (Distanz) zwischen p- und f-Fleck einer bipolaren Gruppe ist in orthodromen heliographischen Grad (°) angegeben (Orthodrome = Großkreis). Die Neigung (Inklination) ist der Winkel zwischen der Orthodrome und dem Breitenkreis. Ein positiver Wert bedeutet, dass der f-Fleck in höheren Breiten liegt als der p-Fleck.

Michael Möller – Steiluferallee 7 – 23669 Timmendorfer Strand eMail: michael_moeller@t-online.de

1 361.3 -7.4 355.8 -8.1 30 16 C	Distanz 5.5	Inklination
		7.3
2 353.8 -15.8 346.4 -15.9 25 29 D	7.1	0.8
3 352.6 -12.4 350.0 -11.7 10 3 B	2.6	-15.4
4 351.4 -24.6 346.6 -25.3 21 26 C	4.4	9.1
5 340.8 2.8 331.0 -0.4 44 23 E	10.3	-18.1
6 326.9 9.6 324.1 11.4 11 15 B	3.3	33.2
7 312.7 -10.5 0 0 7 0 A	0	0
8 307.7 -15.5 304.4 -15.1 31 9 C	3.2	-7.2
9 301.4 5.9 295.7 6.6 20 8 C	5.7	7.0
10 299.2 -15.6 295.4 -17.4 18 24 D	4.1	26.3
11 297.5 13.5 0 0 3 0 A	0	0
12 296.6 -13.6 0 0 8 0 A	0	0
13 279.0 8.1 0 0 19 0 A	0	0
14 269.0 5.9 0 0 10 0 A	0	0
15 267.2 15.9 264.6 16.7 5 6 C	2.6	17.8
16 264.0 -13.0 0 0 2 0 A	0	0
17 257.8 12.3 253.9 10.3 3 B	4.3	-27.6
18 253.4 -14.5 0 0 4 0 A	0	0
19 251.9 -20.8 244.9 -19.6 13 35 B	6.7	-10.4
20 251.7 15.7 241.3 17.3 48 44 E	10.1	9.1
21 250.4 -14.6 244.1 -13.6 52 13 C	6.2	-9.3
22 246.6 20.3 0 0 3 0 A	0	0
23 233.8 -6.6 231.0 -8.5 10 9 C	3.4	34.4
24 228.9 9.2 0 0 24 0 A	0	0
25 228.3 20.2 0 0 3 0 A	0	0
26 222.0 -27.9 211.8 -30.1 43 38 E	9.2	13.9
27 217.8 -5.2 215.0 -4.3 2 7 B	2.9	-17.9
28 215.2 6.8 211.5 8.9 2 15 B	4.2	29.8
29 214.6 -2.6 0 0 2 0 A	0	0
30 211.0 14.7 206.9 17.3 4 4 B	4.7	33.4
31 206.5 -14.2 198.2 -16.9 48 12 C	8.4	18.7
32 205.6 -17.2 0 0 3 0 A	10.3	0
33 205.3 -14.3 196.3 -19.9 5 50 E 34 204.9 24.9 0 0 8 0 A	10.3	33.1
34 204.9 24.9 0 0 8 0 A 35 199.8 -23.9 192.3 -23.9 5 4 B	0 6.9	0 0.0
	4.4	9.0
	11.3	10.2
	11.5	
38 192.4 -3.4 0 0 16 0 A 39 189.1 10.6 184.4 11.2 19 9 C	4.6	0 7.4
39 189.1 10.0 184.4 11.2 19 9 C 40 180.3 -5.6 0 0 3 0 A	4.0	0
40 180.5 -5.0 0 0 3 0 A 41 178.4 -26.5 0 0 2 0 A	0	0
41 178.4 -20.5 0 0 2 0 A 42 175.9 -8.2 171.6 -8.3 21 18 C	4.3	1.4
42 173.9 -0.2 171.0 -0.3 21 10 C 43 172.5 10.5 164.3 11.4 26 30 E	8.1	6.4
44 152.3 -21.5 0 0 5 0 A	0.1	0.4
45 147.4 -21.7 144.8 -20.4 24 12 B	2.8	-28.2
46 146.8 -18.8 142.3 -18.8 4 3 B	4.3	0.0
47 142.4 9.8 0 0 7 0 A	0	0.0

Sonnenfleckenpositionen für die Carrington Rotation Nr. 2300												
Nr.	p-F	leck	f-FI	eck	Anz	ahl Beo.	W	Distanz	Inklination			
48	135.9	-13.1	125.2	-12.5	52	31	Е	10.4	-3.3			
49	135.4	-15.7	0	0	2	0	Α	0	0			
50	135.2	-16.8	130.8	-17.8	25	24	D	4.3	13.4			
51	127.1	-17.7	120.8	-16.9	6	5	В	6.1	-7.6			
52	121.9	-14.2	117.7	-14.4	10	4	В	4.1	2.8			
53	113.7	-18.0	110.4	-20.0	2	1	В	3.7	32.6			
54	108.3	-17.5	105.1	-17.3	29	21	D	3.1	-3.8			
55	107.0	4.7	96.5	6.4	34	30	Ε	10.6	9.2			
56	100.7	12.3	95.8	12.9	46	28	D	4.8	7.2			
57	99.3	15.8	95.7	16.5	1	2	В	3.5	11.4			
58	96.7	7.6	0	0	2	0	Α	0	0			
59	92.7	-1.9	0	0	6	0	Α	0	0			
60	85.0	-7.1	81.4	-7.1	25	24	C	3.6	0.0			
61	74.7	28.7	0	0	12	0	Α	0	0			
62	63.3	29.9	0	0	2	0	Α	0	0			
63	61.9	9.5	56.0	10.9	25	27	D	6.0	13.6			
64	58.2	-7.5	0	0	3	0	Α	0	0			
65	39.1	-13.0	34.4	-13.0	9	5	В	4.6	0.0			
66	33.8	7.9	21.8	9.7	50	40	Ε	12.0	8.6			
67	32.3	-1.8	28.8	-1.5	12	3	C	3.5	-4.9			
68	31.8	22.1	0	0	55	0	J	0	0			
69	31.7	27.2	0	0	2	0	Α	0	0			
70	27.5	-7.2	0	0	2	0	Α	0	0			
71	20.3	22.9	14.4	22.0	2	1	В	5.5	-9.4			
72	20.1	20.0	0	0	2	0	Α	0	0			
73	12.8	-11.9	9.2	-11.9	15	11	C	3.5	0.0			
74	11.5	19.1	0	0	55	0	J	0	0			
75	10.8	-2.5	0	0	3	0	Α	0	0			
76	9.8	25.9	4.6	24.5	12	6	В	4.9	-16.6			
77	9.7	-19.0	6.2	-19.9	12	12	C	3.4	15.3			
78	9.6	6.9	4.2	6.4	16	16	D	5.4	-5.3			
79	7.7	16.6	5.2	17.7	12	4	C	2.6	24.7			
80	2.1	-14.7	0	0	7	0	Α	0	0			
81	2.0	27.2	0	0	4	0	Α	0	0			

Anzahl der Beobachtungen: 2085

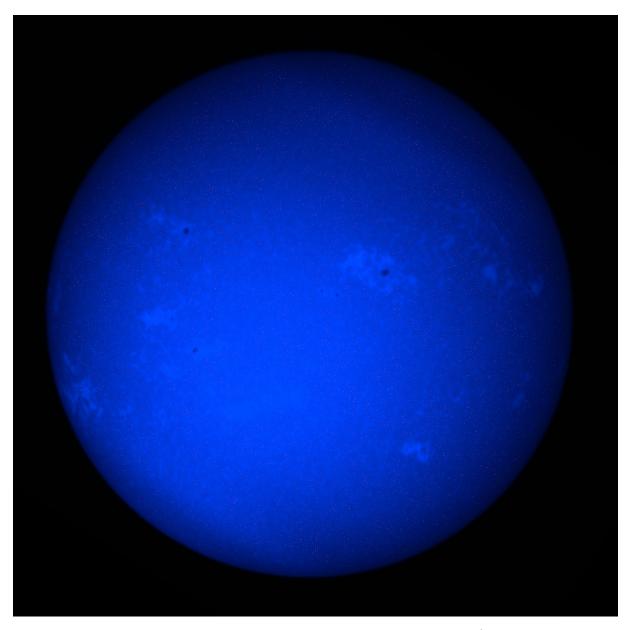
(p: 1269 Beo., 81 Flecken; f: 816 Beo., 49 Flecken; 25.74 Beo. je Gruppe) Zahl der bipolaren Gruppen: 19 (N), 30 (S)

nördliche Gruppen: 36 südliche Gruppen: 45

S	Sonnenf	Sonnenfleckenpositionen für die Carrington Rotation Nr. 2301											
Nr.	p-F	leck	f-FI	eck	Anz	zahl Beo.	W	Distanz	Inklination				
1	357.8	24.8	354.3	25.8	8	7	В	3.3	17.5				
2	353.5	9.2	347.3	7.4	7	4	В	6.4	-16.4				
3	352.8	28.8	0	0	3	0	Α	0	0				
4	351.5	11.7	347.7	13.2	43	4	C	4.0	22.0				
5	349.8	4.6	347.2	6.8	41	15	C	3.4	40.3				
6	342.8	-4.0	339.6	-1.7	6	2	В	3.9	-35.7				
7	341.2	-1.4	0	0	2	0	Α	0	0				
8	338.4	3.8	0	0	3	0	Α	0	0				
9	323.6	-11.0	0	0	4	0	Α	0	0				
10	321.5	-13.7	0	0	2	0	Α	0	0				
11	320.0	-10.4	314.3	-12.1	29	23	D	5.8	16.9				
12	306.4	-2.2	297.9	-4.4	27	33	D	8.8	14.5				
13	303.1	-9.2	0	0	9	0	Α	0	0				
14	303.0	-18.2	0	0	3	0	Α	0	0				
15	299.3	-16.7	0	0	2	0	A	0	0				
16	295.5	-9.0	0	0	4	0	A	0	0				
17	286.0	7.2	0	0	10	0	A C	0	15.7				
18	275.8	7.6	271.5	6.4	25 2	11		4.4	-15.7				
19	273.9	-20.5 26.4	0 268.5	26.1	5	0 4	A B	0 2.7	0 -6.4				
20 21	271.5	-19.0	256.9	-18.9	27	21	D	3.4	-0.4				
22	252.4	17.2	249.1	18.1	8	2	В	3.4	16.0				
23	245.7	-18.0	0	0	6	0	A	0	0				
24	241.7	19.1	0	0	3	0	A	0	0				
25	239.0	12.1	0	0	10	0	A	0	ő				
26	238.2	10.2	232.9	11.5	15	15	В	5.4	14.0				
27	223.3	7.9	219.4	7.4	28	16	C	3.9	-7.4				
28	217.9	-26.1	215.2	-29.1	8	7	C	3.8	51.4				
29	212.3	-7.4	0	0	5	0	Α	0	0				
30	209.2	-8.8	0	0	44	0	J	0	0				
31	203.0	19.1	197.7	17.8	12	11	C	5.2	-14.5				
32	195.6	-10.9	0	0	5	0	Α	0	0				
33	189.2	2.4	185.1	2.2	26	13	C	4.1	-2.8				
34	178.3	-8.3	172.2	-8.7	30	32	D	6.0	3.8				
35	177.0	18.5	173.8	17.9	10	12	C	3.1	-11.2				
36	176.1	10.3	166.8	12.6	54	35	Е	9.4	14.2				
37	172.4	6.3	0	0	2	0	Α	0	0				
38	165.4	24.4	162.4	25.9	3	4	В	3.1	28.9				
39	162.0	11.6	0	0	2	0	A	0	0				
40	155.4	10.4	151.8	10.2	23	17	C	3.6	-3.2				
41	151.5	-16.0	0	0	5	0	A	0	0				
42	151.3	-20.2	142.2	15.7	4	0	A	0	0				
43	146.9	-15.7	142.3	-15.7	5	2	В	4.4	0.0				
44 45	146.2 143.7	-18.3 -21.2	142.7 140.1	-17.8 -21.6	20	12 14	C B	3.4	-8.5				
45	137.7	-21.2	125.1	-21.0	49	36	F	3.4 12.2	6.8 10.9				
47	137.7	16.1	0	19.5	49	0	А	12.2	0				
41	131.0	10.1	U	U	9	l U	А	U	l U				

S	Sonnenfleckenpositionen für die Carrington Rotation Nr. 2301												
Nr.	p-F	leck	f-Fleck		Anz	Anzahl Beo.		Distanz	Inklination				
48	135.8	-11.4	0	0	30	0	J	0	0				
49	124.6	16.9	121.8	19.0	7	8	В	3.4	38.3				
50	121.1	5.0	0	0	6	0	J	0	0				
51	118.8	-21.0	108.4	-22.8	52	15	Е	9.8	10.6				
52	118.5	-14.4	114.9	-13.8	2	7	В	3.5	-9.8				
53	117.2	3.3	109.9	4.7	52	19	D	7.4	10.9				
54	115.8	0.4	0	0	4	0	Α	0	0				
55	113.1	9.7	108.3	11.0	3	2	В	4.9	15.4				
56	112.5	-15.3	108.3	-17.4	51	14	C	4.5	27.6				
57	109.7	13.2	0	0	5	0	Α	0	0				
58	106.7	2.4	103.3	2.2	12	12	В	3.4	-3.4				
59	100.8	-17.4	0	0	4	0	Α	0	0				
60	92.0	-6.8	88.6	-8.6	4	2	В	3.8	28.1				
61	67.9	17.2	0	0	33	0	J	0	0				
62	64.9	8.6	0	0	53	0	J	0	0				
63	54.1	27.9	0	0	12	0	Α	0	0				
64	51.3	28.4	35.8	30.3	55	29	F	13.6	8.0				
65	50.4	9.4	46.9	9.7	29	18	В	3.5	5.0				
66	39.4	11.1	34.0	11.6	6	2	В	5.3	5.4				
67	32.2	31.7	0	0	4	0	Α	0	0				
68	30.3	5.0	26.4	5.5	16	17	D	3.9	7.3				
69	30.0	7.4	24.5	9.0	41	29	D	5.7	16.4				
70	25.1	23.1	0	0	3	0	Α	0	0				
71	13.5	9.5	0	0	3	4	Α	0	0				
72	11.8	-14.1	8.4	-13.3	51	5	C	3.4	-13.6				
73	4.5	-13.9	-1.6	-14.6	45	48	D	6.0	6.8				
74	4.5	24.0	1.6	24.1	13	9	В	2.6	2.2				
75	3.9	-18.0	0	0	2	0	Α	0	0				

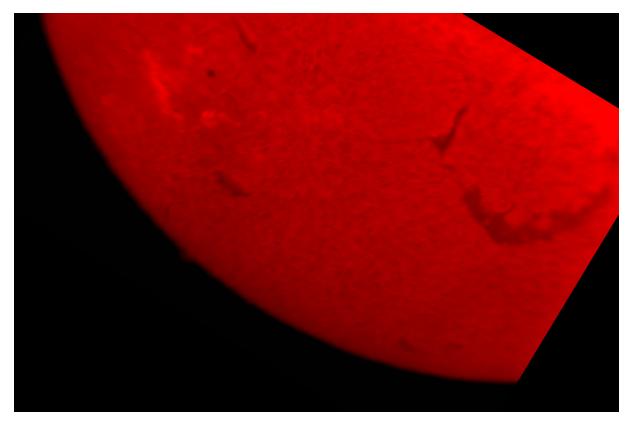
Anzahl der Beobachtungen: 1840


(p: 1248 Beo., 75 Flecken; f: 592 Beo., 41 Flecken; 24.53 Beo. je Gruppe) Zahl der bipolaren Gruppen: 25 (N), 16 (S) nördliche Gruppen: 42 südliche Gruppen: 33

S	Sonnenfleckenpositionen für die Carrington Rotation Nr. 2302											
Nr.	p-F	leck	f-FI	eck	Anz	zahl Beo.	W	Distanz	Inklination			
1	358.4	9.2	0	0	4	0	Α	0	0			
2	357.3	14.0	353.5	15.6	12	18	C	4.0	23.5			
3	328.1	-9.8	0	0	2	0	Α	0	0			
4	302.3	20.8	0	0	8	0	Α	0	0			
5	295.6	23.2	292.2	21.0	8	2	В	3.8	-35.0			
6	287.6	25.1	282.9	27.0	29	31	C	4.6	24.2			
7	284.8	-16.0	281.9	-16.7	4	7	В	2.9	14.1			
8	249.7	6.7	0	0	5	0	Α	0	0			
9	249.1	10.2	242.8	10.5	52	25	D	6.2	2.8			
10	247.5	-18.6	239.1	-17.0	40	35	Ε	8.2	-11.3			
11	237.6	13.6	234.1	12.9	19	19	В	3.5	-11.6			
12	237.6	23.8	0	0	3	0	Α	0	0			
13	216.1	3.7	210.5	4.6	50	26	D	5.7	9.2			
14	214.9	-9.9	210.4	-9.8	25	11	В	4.4	-1.3			
15	214.6	-13.1	212.0	-14.1	16	20	C	2.7	21.6			
16	214.0	-24.5	211.1	-24.9	20	10	В	2.7	8.6			
17	213.4	-15.4	202.3	-18.3	51	16	E	11.0	15.3			
18	203.4	-13.7	191.5	-17.5	26	24	D	12.1	18.4			
19	199.2	-3.3	194.9	-5.6	20	15	D	4.9	28.2			
20	193.7	-17.5	188.1	-19.2	6	13	В	5.6	17.7			
21	188.9	-7.7	186.7	-7.4	23	13	C	2.2	-7.8			
22	188.6	12.3	0	0	9	0	Α	0	0			
23	176.8	10.1	174.1	8.6	54	17	D	3.1	-29.4			
24	173.9	-28.8	171.3	-28.8	7	2	В	2.3	0.0			
25	162.9	25.6	0	0	4	0	A	0	0			
26	160.3	7.1	155.6	9.2	14	21	В	5.1	24.3			
27	144.5	-27.3 -16.1	139.2	16.0	3 16	0	A C	3.3	14.2			
28 29	142.5 137.1	-10.1	134.4	-16.9 -19.3	27	17 31	D	2.6	14.2 13.2			
30	133.4	-10. <i>1</i> -9.4	128.5	-19.5	52	40	D	5.4	27.4			
31	126.0	-0.7	118.6	-11.9	5	2	В	7.4	4.6			
32	126.0	-22.2	0	-1.3	7	0	A	0	0			
33	123.1	4.0	121.9	5.6	35	20	C	2.0	53.1			
34	122.6	-26	116.4	-25.7	2	3	В	5.6	-3.1			
35	121.2	-11.6	118.5	-10.7	2	4	В	2.8	-18.8			
36	117.7	-14.1	111.4	-15.3	20	21	D	6.2	11.1			
37	117.4	8.8	0	0	2	0	A	0.2	0			
38	116.8	-15.5	112.1	-18.0	3	10	В	5.2	29.0			
39	116.0	-26.1	0	0	2	0	A	0	0			
40	114.7	7.2	0	0	2	0	A	0	0			
41	113.2	-10.8	100.6	-11.8	48	24	E	12.4	4.6			
42	103.5	-21.6	0	0	6	0	A	0	0			
43	99.7	-30.7	o o	0	8	o o	A	ő	0			
44	94.9	7.9	90.8	9.5	5	7	C	4.4	21.5			
45	93.8	-24.5	90.7	-25.1	6	5	В	2.9	12.0			
46	92.6	15.7	89.3	14.8	10	8	В	3.3	-15.8			
47	77.3	6.1	0	0	5	0	A	0	0			

Sc	Sonnenfleckenpositionen für die Carrington Rotation Nr. 2302											
Nr.	p-Fleck f-Fl		leck	Anz	Anzahl Beo.		Distanz	Inklination				
48	69.0	7.3	0	0	2	0	Α	0	0			
49	64.6	19.9	0	0	2	0	Α	0	0			
50	63.4	10.3	55.7	9.8	40	40	D	7.6	-3.8			
51	55.7	6.7	52.5	8.6	16	14	C	3.7	30.9			
52	54.6	4.6	50.3	6.1	19	28	C	4.5	19.3			
53	53.8	16.8	46.3	18.8	33	38	D	7.4	15.7			
54	51.6	3.1	47.9	3.3	52	34	D	3.7	3.1			
55	48.2	26.6	43.6	27.4	40	11	C	4.2	11.0			
56	42.0	9.5	0	0	2	0	Α	0	0			
57	39.4	4.7	0	0	12	0	Α	0	0			
58	35.5	8.7	0	0	2	0	Α	0	0			
59	23.5	33.4	0	0	3	0	Α	0	0			
60	19.8	-10.8	16.6	-11.4	26	21	C	3.2	10.8			
61	18.6	13.3	11.1	13.8	32	16	D	7.3	3.9			
62	12.6	11.4	9.8	12.0	20	21	C	2.8	12.3			
63	12.2	8.1	0	0	3	0	Α	0	0			
64	9.7	-11.6	3.0	-10.4	23	29	D	6.7	-10.3			
65	4.6	-15.9	0.7	-15.1	10	14	C	3.8	-12.0			
66	4.3	16.6	-0.8	16.4	16	10	C	4.9	-2.3			
67	2.3	13.7	0	0	2	0	Α	0	0			

Anzahl der Beobachtungen: 1925


(p: 1132 Beo., 67 Flecken; f: 793 Beo., 44 Flecken; 28.73 Beo. je Gruppe) Zahl der bipolaren Gruppen: 20 (N), 24 (S) nördliche Gruppen: 37 südliche Gruppen: 30

Sonne im Licht der Kalzium-K-Linie am 01.07.2025~9:24~MESZ.~ED~80/600~mm, 2-fach Barlowlinse und ein Kalzium-Modul mit 12 mm Durchmesser, Sigma SD15 Spiegelreflexkamera. Aufnahme: Wolfgang Lille.

Sonne im Licht der H α -Linie am 13.07.2025 8:59 MESZ. ED 80/600 mm, 1:4 Telezentrik, 35 mm Etalon, 30 mm Blockfilter, Sigma SD15 Spiegelreflexkamera. Aufnahme: Wolfgang Lille.

Sonne im Licht der H α -Linie am 30.07.2025 10:07 MESZ. FH 80/50mm Etalon/ f=900 mm, 1:4 Telezentrik, 35 mm Etalon, 30 mm Blockfilter, Sigma SD15 Spiegelreflexkamera. Aufnahme: Wolfgang Lille.